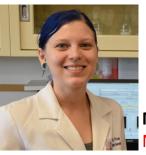


Using SMRT Iso-Seq Sequencing to Dissect Polyploid Transcriptomes: Lessons Learned from Tetra- and Hexaploid Blueberries

Hamid Ashrafi, PhD Hamed Bostan, PhD North Carolina State University PacBio East Coast UGM - June 2017


https://blueberry.cals.ncsu.edu/

Find us on Facebook <u>https://www.facebook.com/TeamVaccinium/</u>

Acknowledgements

Dr. George Yuan PACIFIC BIOSCIENCES®

Ms. Ashley Yow NCSU

Dr. Massimo Iorizzo NCSU

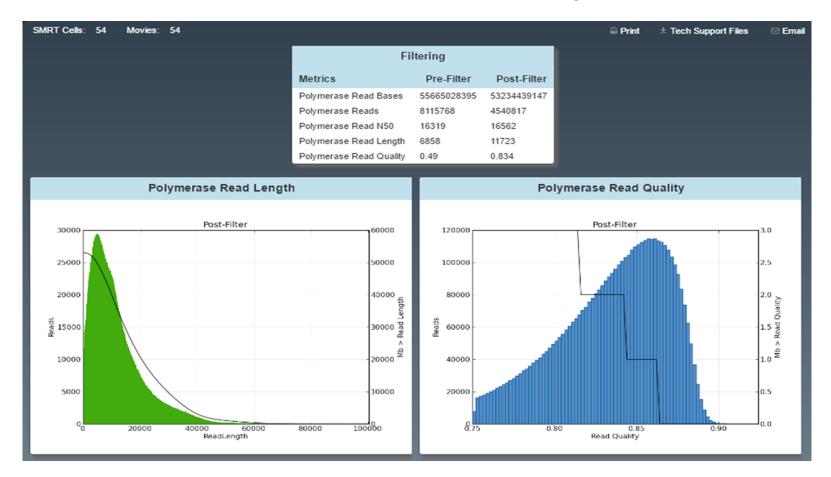
Dr. Liz Tseng PACIFIC BIOSCIENCES®

Dr. Rishi Aryal NCSU

Funding Agencies

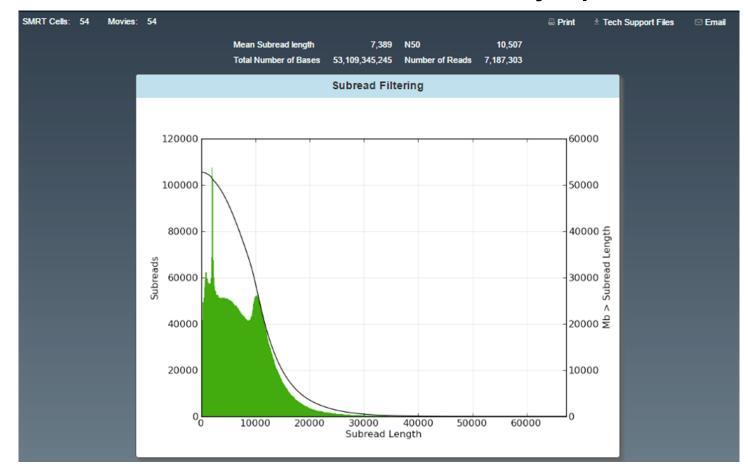
Dr. Hamed Bostan **NCSU**

NC Blueberry Council NC Dept. Ag & CS



Blueberry Ploidy Level and Genome Size

- Naturally occurring 2X, 4X and 6X genomes
 - Most commercial varieties are 4X and 6X
 - Diploid blueberries are either ornamental or wild with no fresh or processed fruit commercial production use, but they have been used in breeding
- It is possible to cross a 2X with 4X and yet obtain a 4X progeny (unreduced gamete)
- It is possible to obtain a 5X genome by crossing a 4X and a 6X genome
 - But a 3X blueberry is rare or have not been successful
- Most breeding efforts are focused on 4X and 6X genomes
- It is believed that 4X blueberry is autotetraploid and 6X is a natural allohexaploid (2X + 4X ?)
- DNA content of a diploid genome is 2C ~1.37 pg, and the monoploid genome size is estimated ~670 Mb



A Total of 54 RS II SMRT Cells Were Used for Blueberry Diploid Genome Assembly

A Total of 54 RS II SMRT Cells Were Used for Blueberry Diploid Genome Assembly

Blueberry Genome Assembly by Falcon – Falcon Unzip

		F	ALCON		FALCON UNZIP			QUIVER		PILON		>> do	icago vetail Raise	Dovetai Hi-C		
	Assembly	Total length (>= 0 bp)	# contins	Largest contin	Total length	60.0%	N50	L50								
	a_ctg	361,971	36	39,382	361,893	39	15,275									
Run 1: Auto	p_ctg	21,191,558	2,666	137,366	21,119,817	40	16,092	377								
Run 2	a_ctg	106,730,494	4,105	152,359	106,730,020	38	31,169	1,147								
Null 2	p_ctg	509,653,341	9,120	919,765	509,648,244	38	123,572									
Run 3	a_ctg	84,496,567	3,930	106,558	84,496,093	38	25,130		-			Falc	on Unzip		Qu	iver
	p_ctg	442,011,250	9,629	743,506	442,005,280	38	98,281		Assemb	h.				Conconcus		Consensus-H-quivered
Run 4	a_ctg	23,833,333	1,467	63,821	23,833,086	38	17,711					all_p_ct				
	p_ctg	258,423,456	8,004	512,507	258,401,652	38	59,073		# contigs	s (>= 0 bp)		2,939	10,479	2,93	39	10,479
Run 5	a_ctg	127,543,692	4,328	246,408	127,542,942	38 38	35,511		# contigs	s (>= 5000 bp	o)	2,939	9,964	2,93	39	9,965
	p_ctg	534,691,250 37,663,019	7,042 2,454	1,104,661 70,925	534,674,473 37,661,940	38 38	174,233		# contig	s (>= 10000 b) Ini	2,938	8,872	2,93	18	8,873
Run 6	a_ctg p_ctg	317,135,666	2,454	674,253	317,050,128	38	65,456			•						
	a_ctg	5,920,512	473	74,955	5,919,651	38	13,824		- ·	s (>= 50000 b	op)	2,398	2,209	2,39		2,221
Run 7	p_ctg	166,123,075	9,797	610,472	166,047,246	39	31,850		Largest o	contig		2,500,48	5 680,366	2,508,	523	682,940
0	a_ctg	150,735,294	3,437	247,829	150,735,131	38	58,249		Total ler	ngth		633,240,4	45 415,765,557	635,57	3.105	417,065,786
Run 8	p_ctg	636,345,139	4,656	2,509,334	636,342,635	38	304,786	595	GC (%)	0		38	39	38		39
Run 9	a_ctg	536,745	40	28,422	536,363	38	16,315	14								
Null 5	p_ctg	16,392,338	1,357	120,648	16,382,771	41	18,948		N50			422,065	68,661	423,7	700	68,980
Run 10	a_ctg	597,910	41	29,506	597,910	38	17,838		N75			185,127	29,958	185,7	727	30,071
	p_ctg	15,509,230	1,283	187,471	15,497,296	40	18,964		L50			420	1,538	42	n	1,535
Run 11	a_ctg	33,120,782	1,943	84,803	33,120,618	38	18,653		L75							
	p_ctg	291,072,902	7,948	916,704	291,056,698	38	67,389					987	3,891	98		3,886
Run 12	a_ctg	33,523,822	1,968	84,803	33,523,658	38	18,552		# N's pe	r 100 kbp		0	0	0		0
	p_ctg	289,991,623 150,816,695	7,952 3,431	757,340 247,829	289,973,641 150,816,532	38 38	67,118 58,249		-							
Run 13	a_ctg	636.287.673	4,650	2,509,334	636,285,169	38	305,215									
	p_ctg a_ctg	99,228,819	4,650	132,812	99,228,502	38	27,976		_							
Run 14	p_ctg	470,560,399	7,598	1,286,657	470,547,111	38	132,876		_							
	a_ctg	33,120,455	1,944	84,803	33,120,291	38	18,614			P fractic	on of	GS(%)	A fraction	of GS(%)	A fracti	on of P(%)
Run 15	p_ctg	291,267,619	7,953	635,651	291,251,415	38	67,268					23(70)				
Run 16: Final	a_ctg	168,843,234	3,138	459,364	168,842,782	38	76,880			9	94.86		62.	25	6	5.62
Null 10: Filldi	p_ctg	658,738,700	4,536	2,585,193	658,729,482	38	426,430	430		_						
CANU 54 Cells	blueberry.contigs	811,103,462	10,783	1,097,648	811,103,462	39	123,295									
	blueberry.bubbles	776,178	32	46,866	776,178	37	24,165	14								

code 3 (false insert on the genome and gap on the transcript)

000160F	647243	647244	000160F	647243	647264000	0160F_pilon	647342 0	GAGAGAGAGAGAGAGAGAGAGA	. 000160F	647173	647533
	000160F	genome1	exon	647173	647533	93	+				
	ID=c1138/f	12p53/4042.m	rna1.exon1;Nai	me=c1138/f12	p53/4042;Pare	nt=c1138/f12p	53/4042.mr	rna1;Target=c1138/f12p53/40421	1 339 +	1	

Note: after removing of the sequence on the unzip genome, the gap disappeared so the sequence was repeated 2 times.

False INSERTION causing gap

000160F Sequence ID: Query_186133 Length: 764783 Number of Matches: 9 Range 1: 647173 to 656596

7719 bits(9324) 0.0() 9402/9433(99%) 31/9433(0%) Plus/Plus reatures: uery 1 CACTAGTCAAATGACAGCCGTTTTTTGATGCAACCATCGTTAGCCTCTCAGTATCTGAGT bjct 647173 CACTAGTCAAATGACAGCCGTTTTTTGATGCAACCATCGTTAGCCTCTCAGTATCTGAGT uery 61 AATACTGTTTgagagagagagagagagagagagagagagag
nuery 1 CACTAGTCAAATGACAGCCGTTTTTTGATGCAACCATCGTTAGCCTCTCAGTATCTGAGT bjct 647173 CACTAGTCAAATGACAGCCGTTTTTTGATGCAACCATCGTTAGCCTCTCAGTATCTGAGT nuery 61 AATACTGTTT
bjet 647173 CACTAGTCAAATGACAGCCGTTTTTTGATGCAACCATCGTAGCCTCTCAGTATCTGAG uery 61 AATACTGTTTgagagagagagagagagagagagagagagag
bjet 647173 CACTAGTCAAATGACAGCCGTTTTTTGATGCAACCATCGTTAGCCTCTCAGTATCTGAGT uery 61 AATACTGTTTgagagagagagagagagagagagagagagag
bjet 647233 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
bjet 647233 AATACTGTTTGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA
bjet 647293 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
bjet 647293 GTAGTTTGGAAGGAAAGTGAAGGAAAAAAGGGATGGGGATCCAAAAGAGAGGCTTTGGGTC uery 159 ATTTCGATCCATTTTCATGCATTCGGATGGCATTGATAAGCTGCTAATGGGACTCGGATT bjet 647353 ATTTCGATCCATTTTCATGCATTCGGATGGCATTGATAAGCTGCTAATGGGACTCGGAT uery 219 CCTCGGGTCACTCGGCGCGGCGTTTCTATGCCCGTCATGTTGCTCTCACTAGCAAGAT
bjet 647353 ATTTCGATCCATTTCATGCATTCGGATGGCATTGATAAGCTGCTAATGGGACTCGGATT Juery 219 CCTCGGGTCACTCGGCGCGCGGCGGCTTTCTATGCCCGTCATGTGCTCTCTACTAGCAAGAT
bjet 647353 ÅTTTCGÅTCCÅTTTTCÅTGCÄTTCGGÅTGGCÅTTGÅTÅÅGCTGCTÅÅTGGGÅCTCGGAT uery 219 CCTCGGGTCACTCGGCGACGGGCTTTCTATGCCCGGTCATGTTGCTCTTCACTAGCAAGAT
bjct 647413 CCTCGGGTCACTCGGCGACGGGCTTTCTATGCCCGTCATGTTGCTCTTCACTAGCAAGAT
uery 279 TATGAACAATATCGGGGGCGCTTCCGCCGGGGCCAAAAACTTCTCTCATACCATCAACAA
bjet 647473 TATGAACAATATCGGGGGGCGCTTCCGCCGGGGCCAAAAACTTCTCTCATACCATCAACAA
uery 339 GGTCCCTTCCCTCTCATAACtatatatatatatatatatatatatatatatatata
bjct 647533 GGTCCCTTCCCTCTCATAACTATATATATATATATATATA
uery 399 tatatatatatatatatatatatatatatatacacacatgcgtacatatgtatatata
bjct 647593 TATATATATATATATATATATATATATATATATATATA

000160F_pilon

Sequence ID: Query_179209 Length: 764876 Number of Matches: 9 Range 1: 647272 to 656682

Score		Expect	Identities	Gaps	Strand	Frame	
17379 b	its(9411)	0.0()	9411/9411(100%)	0/9411(0%)	Plus/Plus		
Features	S:						
Query	1		ATGACAGCCGTTTTTT				60
Sbjct	647272		ATGACAGCCGTTTTTT				6473
Query	61	AATACTGTTT	gagagagagagagagagaga	gagagagagagagT	AGTTTGGAAGO	GAAAGTGAAG	120
Sbjct	647332		GAGAGAGAGAGAGAGAGA				6473
Query	121		TGGGGATCCAAAAGAA				180
Sbjct	647392		TGGGGATCCAAAAGAA				6474
Query	181		TTGATAAGCTGCTAAT				240
Sbjct	647452		TTGATAAGCTGCTAAT				6475
Query	241		CCGTCATGTTGCTCTT				300
Sbjct	647512		CCGTCATGTTGCTCTT				6475
Query	301		CCAAAAACTTCTCTCA				360
Sbjct	647572		CCAAAAACTTCTCTCA				6476
Query	361		tatatatatatatata				420
Sbjct	647632		TATATATATATATATATA				6476
Query	421	tatatatat	acacatgcgtacatat	gtatatatatCACC	ACGCAATGAAC	TTTTGAGTA	480
hist	647692	TATATATATA	LILLILLILLILLILLILLILLILLILLILLILLILLIL	2737373737370300	ACCONTON	TTTTCACTA	6477

code 5 (false insert on the genome and stopping the transcript mapping to continue- partial mapping) 000886F 22018 22019 000886F 22018 22053 000886F_pilon 22009 CAACAACAACAAAACATAACCATAGTCCCAAAGGGT . 000886F 21276 24514 000886F 21276 24514 98 genome1 exon -ID=c18093/f2p28/4207.mrna1.exon1;Name=c18093/f2p28/4207;Parent=c18093/f2p28/4207.mrna1;Target=c18093/f2p28/4207 1 3258 + 1

Note: in the unzip genome, the mapping stopped when reached to the sequence at base 22017 but in the pilon version the mapping continues since that sequence (interrupt) was removed so the gene is predicted complete.

936 bits(7005) 0.0() 7010/7012(99%) 2/7012(0%) Plus/Minus atures: ery 2462 TGTTCAGTCCACTATGATGTCTCCATGAATCTCTTATCAGCTCGAATCTTCCAAAGAACTC jet 22017 TGTTCAGTCCACTATGATGTCTCCATGAATCTCTTATCAGCTCGAATCTTCCAAAGAACTC ery 2522 AGGTTGTTCAAGAAATCTCTATGGGCATTTCGCACTTTGGGGGTATAGCGGTTGTTGCTGC ery 2522 AGGTTGTTCAAGAAATCTCTATGGGCATTTCGCACTTTGGGGGTATAGCGGTTGTTGCTGC ery 2522 AGGTTGTTCAAGAAATCTCTATGGGCATTTCGCACTTTGGGGTATAGCGGTTGTTGCTGC ery 2582 TTGTTCATTCATTCTTCTCTATGGGCATTTCGCACCTTGGTTCTCATTATCAAAATGTCT jet 21897 TTGTTTCATTTCTTCTCTTAAGACACTCACCCAGGCTCTTGTTTCTCATTATCAAATGTCT ijet 21897 TTGTTTCATTTCTTTTAGCCGATAAGTGATTACTTAACAATTACCTGTGTTAAGATTCT ijet 21897 TTGTTCATTGTGTGTGCTCACAGAAGTGATTACTTAACAATTACCTGTGGTCCAACAG ery 2642 TTTGATATGTGTTCTTTAGCCGATAAGTGATTACTTAACAATTACCTGTGGTCCAACAG ijet 21877 TTGGTTCAGAGGGATGTGCACAATTATCCCAACTAAGTATTAGTTCTGTGGTCCCAACAG ijet 21777 AcCTTTGTCGAGGGGATGTGCACAATTATCCCAACTAGTATTGGAAGAACTGAAGTTTAACTAAGTGGTCCAACAG ery 2762 ACCTTTGTCGAGGGGTTTCTGTTTCCTATTCCAATTACCCAACTAGTGAAGAACTGAAGTTGACCTT ijet 21777 AcCTATGAGGGGCTTTCTGTTTC	000886	F						
coreExpectIdentitiesGapsStrandFrame936 bits(7005)0.0()7010/7012(99%)2/7012(0%)Plus/Minusatures:ery2462TGTTCAGTCCACTATGATGTCTCCATGAATCTCTTATCAGCTCGAATCTTCAAAGAACTCijct22017TGTTCAGTCCACTATGATGTCTCCATGAATCTCTTATCAGCTCGAATCTTCAAAAGAACTCijct22017TGTTCAGTCCACTATGATGTCTCCATGAATCTCTTATCAGCTGGAATCTTCAAAAGAACTCery2522AGGTTGTTCAAGAAATCTCTATGGGCATTTCGCACTTTGGGGTATAGCGGTTGTTGCTGCijct21957AGGTTGTTCAAGAAATCTCTATGGGCATTTCGCACTTGGGGTATAGCGGTTGTTGCTGCery2582TTGTTCATTCTTCTCTCAAGACACTCACCCAGGCTCTTGTTCTCATTATCAAATGTCTijct21897TTGTTTCATTTCTTCTCTAAGACACTCACCCAGGCTCTTGTTCTCATTACCAAATGTCTijct21837TTTGATATGTGTTCTTTAGCCGATAAGTGATTACTTAACAATTACCTGGTGTAAGTTTCTery2702ACCTTTGTCTGACGGATGTGCACAATTATCCCAACTAGTATTAGTTCTGTGGTCCAACAGery2762AACTCATGATGAGGGCTTTCTGTTCCTATTCCAATTAGTTCTGGGTCCAACAGery2762AACTCATGATGAGGCTTTCTGTTTCCTATTCCAATTAGTTGTGAAGATTGACCTijct21777ACCTTTGTCTGACGGATGTGCACAAATTATCCCAACTAGTATTGGAAGAACTGAAAGTTGACTTijct21657CTTCAATAACTGCACTGATTTTGAGAAGACCATATCGGAGGTGGTGCTTCTGTACCCTTCAijct21657CTTCAATAACTGCACTGATTTTGAGAAGACCATATCGGAGGTGGTGCTTCTGTACCCTTCAijct21597ATTTGAGGATAAAGAGGACAAACATTCTTGAATTATTCCATTTCCAATGAAGTGAGGCTTATTAAery2822CTTCAATAAAGAGGACAAACATTCTTGAATTATTCCATTTCCAATTGAATTGGAACTGACGGTTGTAACTGAAGGGTTATTAAery2942CTTAAGGCCTTCCAATAAGAGGACAAACATTCTTGAATTATTCCATTTCCAATGAAGATTGGAATTGGAGGTTATTAAA<				ngth: 200276 Number	of Matches: 4			
936 bits(7005) 0.0() 7010/7012(99%) 2/7012(0%) Plus/Minus atures: ery 2462 TGTTCAGTCCACTATGATGTCTCCATGAATCTCTTATCAGCTCGAATCTTCCAAAGAACTC jet 22017 TGTTCAGTCCACCATGATGTCTCCATGAATCTCTTATCAGCTCGAATCTTCCAAAGAACTC ery 2522 AGGTTGTTCAAGAAATCTCTATGGGCATTTCGCACTTTGCGGGTATAGCGGTTGTTGCTGC jet 21957 AGGTTGTTCAAGAAATCTCTATGGGCATTTCGCACTTTGGGGGTATAGCGGTTGTTGCTGC ery 2582 TTGTTCATTCATTCTTCTCTAAGACACTCACCCAGGCTCTTGTTTCTCATTATCAAAGTGTCT jet 21897 TTGTTTCATTCTTTTCTCTCTAAGACACTCACCCAGGCTCTTGTTTCTCATTATCAAATGTCT ijet 21897 TTGTTTCATTCTTTTGCCGATAAGTGATTACTTAACAATTACCTGTGTTAAGTTCT ijet 21897 TTGTTCATTGTGTTCTTTAGCCGATAAGTGATTACTTAACAATTACCTGTGTTCTGAAGTTTCT ijet 21897 TTGTTCATTCTTTTGCCGATAAGTGATTACTTAACAATTACCTGTGTTCTGAAGTTCT ijet 21877 TTGGTTCTAGAGGGATGTGCACAATTATCCCAACTAACTTAACAATTACCTGTGGTCCAACAG ijet 21777 ACCTTTGTCGAGGGGATGTGCACAATTATCCCAACTAGGATTTGGAAGAACTGAAGGTTGACCAACAG ijet 21777 ACCTTTGTCGAGGGGATGTGCACAATTATCCCAACTAGGAGTGTTGCTGTGAACCAACAG ijet 21777 ACCTTTGTCGAGGGGGTTCTCGTTTCCGATTCGAAGAAGACCAATGCGAGGAGGGGGGGG	Range	1: 15008 to	0 22017					
atures: ery 2462 TGTTCAGTCCACTATGATGTCTCCATGAATCTCTTATCAGCTCGAATCTTCAAAGAACTC ijct 22017 TGTTCAGTCCACTATGATGTCTCCATGAATCTCTTATCAGCTCGAATCTTCAAAGAAACTC ery 2522 AGGTTGTTCAAGAAATCTCTATGGGCATTTCGCACTTTGGGGTATAGCGGTTGTTGCTGC ijct 21957 AGGTTGTTCAAGAAATCTCTTATGGGCATTTCGCACTTTGGGGTATAGCGGTTGTTGCTGC ery 2582 TTGTTTCATTCTTCTCTATGGGCATTTCGCACTTTGGGGTATAGCGGTTGTTGCTGC ijct 21897 TTGTTTCATTTCTTCTCTAAGACACTCACCCAGGCTCTTGTTTCTCATTATCAAATGTCT ijct 21897 TTGTTTCATTTCTTCTCTAAGACACTCACCCAGGCTCTTGTTTCTCATTATCAAATGTCT ijct 21837 TTTGATATGTGTTCTTTAGCCGATAAGTGATTACTTAACAATTACCTGTGTTAAGTTTCT ery 2702 ACCTTTGTCTGACGGATGTGCACAATTATCCCAACTAGTATTAGTTCTGTGGGTCCAACAG iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	Score		Expect	Identities	Gaps	Strand	Frame	
ery 2462 TGTTCAGTCCACTATGATGTCTCCATGAATCTCTTATCAGCTCGAATCTTCAAAGAACTC 11111111111111111111111111111111111	12936 t	oits(7005)	0.0()	7010/7012(99%)	2/7012(0%)	Plus/Minus		
jet 22017 TGTTCAGGAAAACCCCATGAGAGCCATATCGGAGCCGGATAGCGGGTGTTGAGGCGCTTATG AGGTTGTTCAAGAAATCCCTATGGGCATTTCGCACTTTGGGGGTATAGCGGTTGTTGCCGC jet 21957 AGGTTGTTCAAGAAATCTCTATGGGCATTTCGCACTTTGGGGGTATAGCGGTTGTTGCTGC ery 2582 TTGTTTCATTCTTCTCTAAGACACTCACCCAGGCTCTTGTTCTCATATACAAAGGTCT jet 21897 TTGTTTCATTTCTTCTCTAAGACACTCACCCAGGCTCTTGTTTCTCATTATCAAATGTCT ery 2642 TTTGATATGTGTTCTTTAGCCGATAAGTGATTACTTAACAATTACCTGTGTTAAGTTTCT jet 21837 TTTGATATGTGTTCTTTAGCCGATAAGTGATTACTTAACAATTACCTGTGTTAAGTTTCT ery 2702 ACCTTTGTCGACGGATGTGCACAATTATCCCAACTAGTATTAGTTCTGTGGTCCAACAG jet 21777 ACCTTTGTCGACGGATGGCACAATTATCCCAACTAGTATTAGTTCTGTGGGTCCAACAG ery 2762 AACTCATGATGAGGCTTTCTGTTTCCTATTCCAAGTATTGGGAGGGTGCTCCGAACAG iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	Feature	S:						
jet 22017 TGTTCAGTCCACTATGATGTCTCCATGAATCTCTTATCAGCTCGAATCTTCAAAGAAACTC AGGTTGTTCAAGAAATCTCTATGGGCATTTCGCACTTTGGGGTATAGCGGTTGTTGCTGC jet 21957 AGGTTGTTCAAGAAATCTCTAATGGCATTTCGCACTTTGGGGTATAGCGGTTGTTGCTGC ery 2582 TTGTTTCATTCTCTCTAAGACACTCACCCAGGCTCTTGTTTCTCATTATCAAATGTCT jet 21897 TTGTTTCATTTCTTCTCTAAGACACTCACCCAGGCTCTTGTTTCTCATTATCAAATGTCT ery 2642 TTTGATATGTGTTCTTTAGCCGATAAGTGATTACTTAACAATTACCTGTGTTAAGTTCT iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	Query	2462						
jet 21957 AGGTTGTTCAAGAAATCTCTATGGGCATTTCGCACTTTGGGGGTATAGCGGTTGTTGCTGC ery 2582 TTGTTTCATTCTTCTCTAAGACACTCACCCAGGCTCTTGTTTCTCATTATCAAATGTCT jet 21897 TTGTTTCATTTCTTCTCTAAGACACTCACCCAGGCTCTTGTTTCTCATTATCAAATGTCT ery 2642 TTTGATATGTGTTCTTTAGCCGATAAGTGATTACTTAACAATTACCTGTGTAAGTTTCT jet 21837 TTTGATATGTGTTCTTTAGCCGATAAGTGATTACTTAACAATTACCTGTGTTAAGTTTCT illillillillillillillillillillillillill	Sbjct	22017						
jet 21957 AGGTTGTTCAAGAAATCTCTATGGGCATTTCGCACTTTGGGGGTATAGCGGTTGTTGCTGC ery 2582 TTGTTCATTCTTCTCTAAGACACTCACCCAGGCTCTTGTTCTCATATAGCAAATGTCT iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	Query	2522						
jet 21897 TTGTTTCATTTCTTCTCTAAGACACTCACCCAGGCTCTTGTTTCCATTATCAAATGCT ery 2642 TTTGATATGTGTTCTTTAGCCGATAAGTGATTACTTAACAATTACCTGTGTTAAGTTTCT jet 21837 TTTGATATGTGTTCTTTAGCCGATAAGTGATTACTTAACAATTACCTGTGTTAAGTTTCT ery 2702 ACCTTTGTCTGACGGATGTGCACAATTATCCCAACTAGTATTAGTTCTGTGGGTCCAACAG jet 21777 ACCTTTGTCTGACGGATGTGCACAATTATCCCAACTAGTATTAGTTCTGTGGGTCCAACAG ery 2762 AACTCATGATGAGGCTTTCTGTTTCCTATTCAAGTATTGTGAAGAACTGAAGTTGACTT jet 21717 AACTCATGATGGAGGCTTTCTGTTTCCTATTCAAGTATTGTGAAGAACTGAAGTTGACTT jet 21717 AACTCATGATGGCACAATTTTGAGAAGCACTAACGGAGGTGGCTCTGTAACCTTCA jet 21657 CTTCAATAACTGCACTGATTTTGAGAAGAAGCCATATCGGAGTGGTGCTTCTGTACCCTTCA ery 2882 ATTTGAGGATAAAGAGGACAAACATTCTTGAATTATTCATTTCATGTAATGCAGCTTATAA jet 21597 ATTTGAGGATAAAGAGGACAAACATTCTTGAATTATTCATTC	Sbjct	21957						
jet 21897 TTGTTTCATTTCTTCTCTAAGACACTCACCCAGGCTCTTGTTTCTCATTATCAAATGTCT ery 2642 TTTGATATGTGTTCTTTAGCCGATAAGTGATTACTTAACAATTACCTGTGTTAAGTTTCT jet 21837 TTTGATATGTGTTCTTTAGCCGATAAGTGATTACTTAACAATTACCTGTGTTAAGTTCT ery 2702 ACCTTTGTCTGACGGATGTGCACAATTATCCCAACTAGTATTAGTTCTGTGGGTCCAACAG iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	Query	2582						
jet 21837 ITTGATATGTGTTCTTTAGCCGATAAGTGATACTTAACAATTACCTGTGTGTCCAACAAG ery 2702 ACCTTTGTCTGACGGATGTGCACAATTATCCCAACTAGTATTAGTTCTGTGGTCCAACAG jet 21777 ACCTTTGTCTGACGGATGTGCACAATTATCCCAACTAGTATTAGTTCTGTGGTCCAACAG ery 2762 AACTCATGATGAGGCTTTCTGTTCCTATTCAAGTATTAGTTCTGTGGGTCCAACAG jet 21717 ACCTCATGATGAGGCTTTCTGTTCCTATTCAAGTATTGTGAAGAACTGAAGTTGACTT jet 21717 AACTCATGATGAGGCTTTCTGTTTCCTATTCAAGTATTGTGAAGAACTGAAGTTTGACTT ijet 21717 AACTCATGATGAGGCTTTCTGTTTCCTATTCAAGTATTGTGAAGAACTGAAGTTTGACCTTCA ery 2822 CTTCAATAACTGCACTGATTTTGAGAAGACCATATCGGAGTGGTGCTTCTGTACCCTTCA jet 21557 CTTCAATAACGGACAAACATTCTTGAATATCATTTCATT	bjct	21897						
jet 21837 ÍTÍTGÁTÁTGTÓTÍTÍAGÓCGÁTÁÁGÍGÁÍTÁÁCÍTÁÁCÁÁÍTÍÁCÓTGTÓTÁÁGÍTÍTÁÁGÍTÍTÍ	Query	2642						
jet 21777 ACCTTTGTCGACGGATAGGGCAAACATTCTTGAAGTATTAGTTCTGTGAGGGCCCAACAG ery 2762 AACTCATGATGAGGGCTTTCTGTTTCCTATTCAAGTATTAGTTCTGTGGGCCCAACAG jet 21717 AACTCATGATGAGGGCTTTCTGTTTCCTATTCAAGTATTGTGAAGAACTGAAGTTTGACTT ery 2822 CTTCAATAACTGCACTGATTTTGAGAAGACCATATCGGAGTGGTGCTTCTGTACCCTTCA jet 21657 CTTCCAATAACTGCACTGATTTTGAGAACAGACCATATCGGAGTGGTGCTTCTGTACCCTTCA ery 2882 ATTTGAGGATAAAGAGGACAAACATTCTTGAATTATCCATTCATGAATGCAGCTTATAA jet 21597 ATTTGAGGATAAAGAGGACAAACATTCTTGAATTATCCATTCATGAATGCAGCTTATAA ery 2942 CTTAAGTCCCTTTCAACATTGGGAAAGAGAGGATGATTCATGAAAATTGGCAGCTTATAA	Sbjct	21837						
jet 21777 ACCTTTGTCTGACGGATGTGCACAATTATCCCCAACTAGTATTAGTTCTGTGGGCCAACAG ery 2762 AACTCATGATGAGGCCTTTCTGTTTCCTATTCAAGTATTGGAAGAACTGAAGTTGACTT jet 21717 AACTCATGATGAGGGCTTTCTGTTTCCTATTCAAGTATTGTGAAGAACTGAAGTTTGACTT ery 2822 CTTCAATAACTGCACTGATTTTGAGAAGACCATATCGGAGTGGTGCTTCTGTACCCTTCA 111111111111111111111111111111	Query	2702						
jet 21717 AACTCATGATGAGGCTTTCTGTTTCCTATTCAAGTATTGGTGGTCTTCTGTACCCTTCA ery 2822 CTTCAATAACTGCACTGATTTTGAGAAGACCATATCGGAGTGGTGCTTCTGTACCCTTCA 111111111111111111111111111111	Sbjct	21777						
jet 21717 AACTCATGATGAGGCTTTCTGTTTCCTATTCAAGTATTGTGAAGAACTGAAGATTGAACT ery 2822 CTTCAATAACTGCACTGATTTTGAGAAGACCATATCGGAGTGGTGCTTCTGTACCCTTCA 111111111111111111111111111111	Query	2762						
jet 21657 CTTCAATAACTGCACTGATTTTGAGAAAGACCATATCGGAGTGGTGCTTCTGTACCCTTCA ery 2882 ATTTGAGGATAAAGAGGACAAACATTCTTGAATTATTCATTTCATGAATGCAGCCTTATAA jet 21597 ATTTGAGGATAAAGAGGACAAACATTCTTGAATTATTCATTTCATGAATGCAGCCTTATAA ery 2942 CTTAAGTCCCTTTCAACATTGGTGGAAAGAGATGTTCATTCA	Sbjct	21717						
jet 21657 CTTCAATAACTGCACTGATTTTGAGAAGACCATATCGGAGTGGTGCTTCTGTACCCTTCA ery 2882 ATTTGAGGATAAAGAGGACAAACATTCTTGAATTATTCATTTCATGAATGCAGCCTTATAA jet 21597 ATTTGAGGATAAAGAGGACAAACATTCTTGAATTATTCATTTCATGAATGCAGCCTTATAA ery 2942 CTTAAGTCCCTTCCAACATTGGTGGGAAAGAGATGTTCATTCA	Query	2822						
jct 21597 ATTTGAGGATAAAGAGGACAAACATTCTTGAATTATTCATTC	Sbjct	21657						
jet 21597 ÁTTTGAĞGATAAAĞGAĞGACAAACATTCTTGAATTATTCATTTCAT	uery	2882						
	Sbjct	21597						
	Query	2942						
	Sbict	21537						

Score	Expect	Identities	Gaps	Strand	Frame	
17494 bits(94	(73) 0.0()	9473/9473(100%)	0/9473(0%)	Plus/Minus		
Features:						
Query 1		CGGGCGGTGTGCGATCT				60
Sbjct 244		CGGGCGGTGTGCGATCTC				2441
Query 61		AGATAAAGGATCTGAGGI				120
Sbjct 244		AGATAAAGGATCTGAGGT				2435
Query 121		AAACGTGAATTAGCATA				180
Sbjct 243		AAACGTGAATTAGCATA				2429
Query 181		GCTGTAAATTAGATGATI				240
Sbjct 242		GCTGTAAATTAGATGATT				2423
Query 241		TGTTACATTACAAGTTG1				300
Sbjct 242		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				2417
Query 301		AGCATTTAGATTGGCGGG				360
Sbjct 241		AGCATTTAGATTGGCGGC				2411
Query 361		TTTGAGTTCAATCTTGA				420
Sbjct 241		TTTGAGTTCAATCTTGA				2405
Query 421		TGAAGGAACAATCGTGG1				480
Sbjct 240		TGAAGGAACAATCGTGG1				2399
Query 481		GGAATTGAGTTGGGTGTT				540
an 4 - 4 - 4 - 4 - 4 - 4						0000

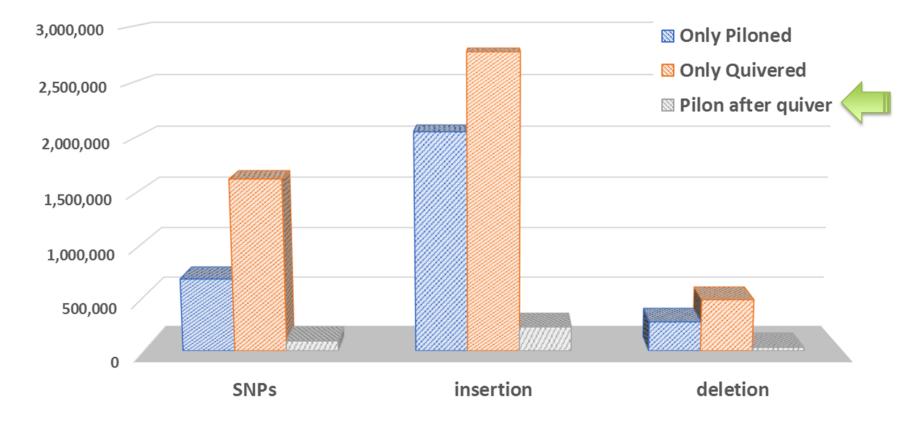
Score

code 6 (false deletion on the genome and gap on the genome when mapping the tanscript)

000104F 111391 111392 000104F 111391000104F_pilon 111417 111427. TCTCTCTCTCT 000104F 110997 111584 000104F genome1 110997 111584 98 exon -ID=c13750/f25p70/3400.mrna1.exon1;Name=c13750/f25p70/3400;Parent=c13750/f25p70/3400.mrna1;Target=c13750/f25p70/34001591+ 1

Note: on the unizp genome, this sequence is missing which caused a gap on position 111391, when the sequence is inserted/corrected on the pilon genome, the gap is removed and replaced with the matches.

000104F Sequence ID: Query_213451 Length: 924261 Number of Matches: 5 Range 1: 99245 to 111584


Expect Identities

Score	Expect	Identities	Gaps	Strand	Frame
2718 bits(12302)	0.0()	12340/12355(99%)	15/12355(0%)	Plus/Minus	
eatures:					
uery 1		AATACAGCTCATTGTGT			
bjct 111584		AATACAGCTCATTGTGT			
Query 61		GAAAAAATTCCTCACTG			
Sbjct 111524		GAAAAAATTCCTCACTG			
Query 121		CTTCCCCCTCGGCGGCC			
Sbjct 111465		CTTCCCCCTCGGCGGCC			
Query 181	gagagagag	agagagagagagagagagagagagagagagagagagag	gagagagGGTCCGT1	TTAGTTGGGAG	AGCCCACC
Sbjct 111406		-GAG-GAGAGAGAGAGA			
Query 241		CGTGGTGATTGCTTCGA			
Sbjct 111358		CGTGGTGATTGCTTCGA			
Query 301		TCTCTGTAGCCATTGAC			
Sbjct 111298		TCTCTGTAGCCATTGAC			
Query 361		GTGGTGGTGGTTTTGGT			
Sbjct 111238		GTGGTGGTGGTTTTGGT			
Query 421		GACCTATCGTTCTTTAG			
Sbjct 111178		GACCTATCGTTCTTTAG			
Query 481	CCCACGCTG	CGCCCACACTCTCACCG	CCATCGCCGCTACTA		
111110					

			False DELE	TION ca	ausing	gal
		ength: 924449 Numbe	er of Matches: 5			
Range 1: 99270 to	111624					
Score	Expect	Identities	Gaps	Strand	Frame	
22816 bits(12355)	0.0()	12355/12355(100%)	0/12355(0%)	Plus/Minus		
Features:						
Query 1		AATACAGCTCATTGTG				60
Sbjct 111624		AATACAGCTCATTGTG				1115
Query 61		GAAAAAATTCCTCACT				120
Sbjct 111564		GAAAAAATTCCTCACT				1115
Query 121		CTTCCCCCTCGGCGGC				180
Sbjct 111504		CTTCCCCCTCGGCGGC				1114
Query 181	gagagagag	agagagagagagagagag	agagagagGGTCCGT1	TTAGTTGGGA	GAGCCCACC	240
Sbjct 111444		AGAGAGAGAGAGAGAGAG				1113
Query 241		CGTGGTGATTGCTTCG				300
Sbjct 111384		CGTGGTGATTGCTTCG				1113
Query 301		TCTCTGTAGCCATTGA				360
Sbjct 111324		TCTCTGTAGCCATTGA				1112
Query 361		GTGGTGGTGGTTTTGG				420
Sbjct 111264		GTGGTGGTGGTGGTTTTGG				1112
Query 421		GACCTATCGTTCTTTA				480
Sbjct 111204		GACCTATCGTTCTTTA				1111
Query 481		CGCCCACACTCTCACC				540
Shiet 111144						1110

Comparison of Base Correction Using Different Methods

Worth to mention that:

The total number of bases Pilon corrected was < 0.07% of the total genome size assembled

So if believe in Pilon, after Falcon assembly and Quivering, we already have a genome assembled of over 99.93% accuracy.

Iso-Seq Project

Things to consider

- 1. Choice germplasm source for RNA extraction
 - Diploid (for genome annotation as well as comparison)
 - Tetraploid
 - Hexaploid
- 2. Variety or cultivar
 - W85-20 V. caesariense (N.J. blueberry)
 - O'Neal V. corymbosum (native to north east of the U.S.)
 - **Premier** *V. virgatum* or *ashei* (native to southern eastern U.S.)
- 3. Tissues

Iso-Seq Project

Tissue Samples Were Collected from Field Grown Blueberries; Leaf, Flower, Fruit, Root

Leaf

Flower Stage 1 Flower Stage 3

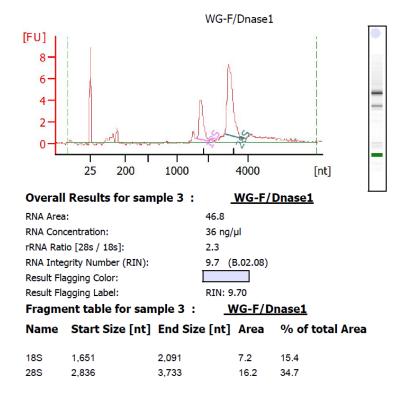
Flower Stage 5

Fruit Stage 1

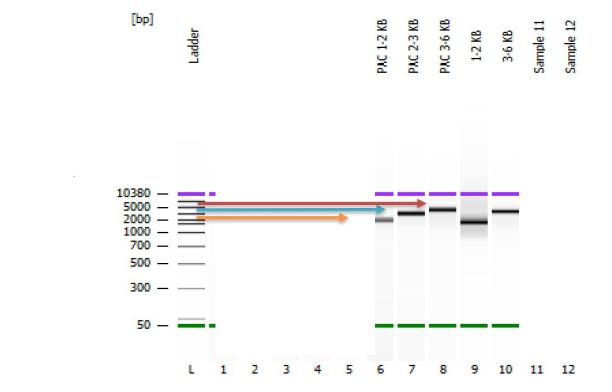
Fruit Stage 2

Fruit Stage 3

Fruit Stage 4



Root


Total RNA Extraction Was Attempted by Different Kits

- Sigma Plant RNA extraction Kit
- Bioanalyzer was used to check the quality of RNA
- The same RNA for both Illumina and Iso-Seq libraries
- Iso-Seq libraries were made with size selection option
- KAPA stranded RNA-Seq Kit to make Illumina libraries

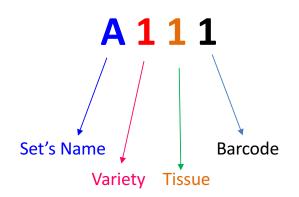
Barcoded Library Construction for PacBio Iso-seq Sequencing

PI

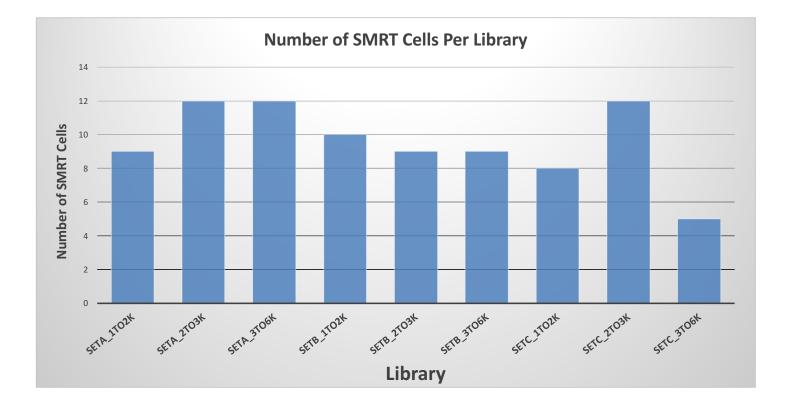
Making Barcoded Iso-Seq Libraries

• There were (are) six barcoded adapters available to make pooled libraries

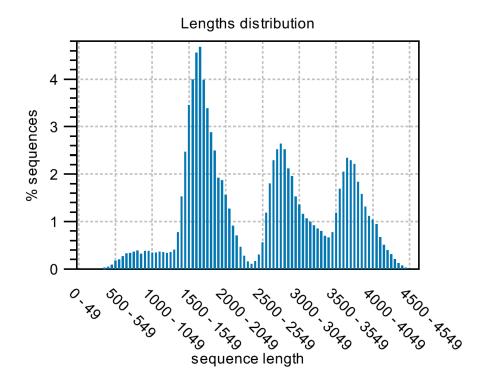
	Primer Sequence	16-mer barcode	oligo dT
dT_BC1	AAGCAGTGGTATCAACGCAGAG	GTACtcagacgatgcgtcatTTTTT	TTTTTTTTTTTTTTTTTTTTTVN
dT_BC2	AAGCAGTGGTATCAACGCAGAG	GTAC ctata catga ct ct g c T T T T T	ττττττττττττττττττ
dT_BC3	AAGCAGTGGTATCAACGCAGAG	GTACtactagagtagcactcTTTTT	TTTTTTTTTTTTTTTTTTTVN
dT_BC4	AAGCAGTGGTATCAACGCAGAG	GTACtgtgtatcagtacatgTTTTT	TTTTTTTTTTTTTTTTTTTTTVN
dT_BC5	AAGCAGTGGTATCAACGCAGAG	GTAC gatctctactatatgcTTTTT	ΓΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤ
dT_BC1	AAGCAGTGGTATCAACGCAGAG	GTAC a cagt ctatact g ctg T T T T T	τττττττττττττττττ


- Nine tissues for each variety (4X and 6X)
 - Only 4X and 6X libraries were barcoded (RSII Sequencing)
 - 2X library was not barcoded (2 Sequel SMRT cells to date)

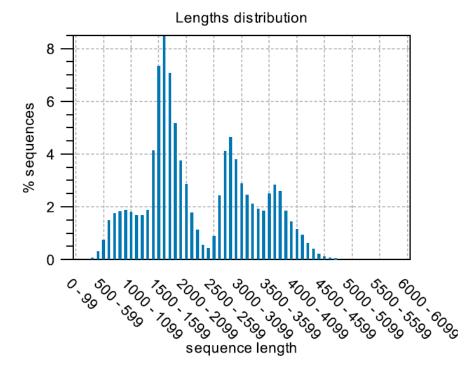
We defined sets (A, B and C)


Our approach

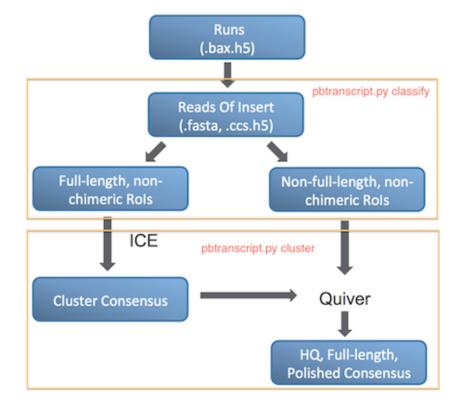
- Make groups of six and having an indexing convention
 - A111, A122, A133, A144, A155, A166 (1-2, 2-3, 3-6 kb)
 B171, B182, B193, B214, B225, B236 (1-2, 2-3, 3-6 kb)
 - C241, C252, C263, C274, C285, C296 (1-2, 2-3, 3-6 kb)
- SMRT analysis 2.3.0 to analyze the data


On Average We Ran 9.5 SMRT Cells Per Library (87 RSII total)

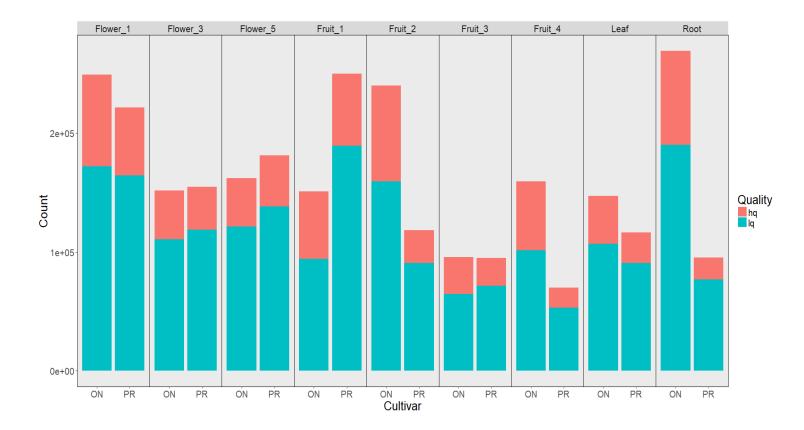
Quiver Was Used to Obtain HQ and LQ Data


- Full Length Non-Chimeric (FLNC) = 1,624,690
- Tetraploid Genome LQ = 773,571
- Tetraploid Genome HQ = 141,399 (351,343,616 nt)

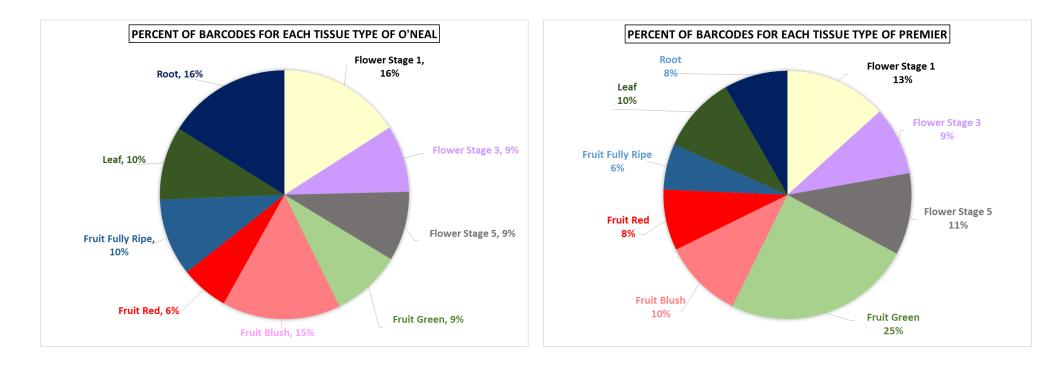
Quiver Was Used to Obtain HQ and LQ Data


- Full Length Non-Chimeric (FLNC) = 1,302,432
- Hexaploid Genome LQ = 614,378
- Hexaploid genome HQ = 110,050 and (250,964,213 nt)

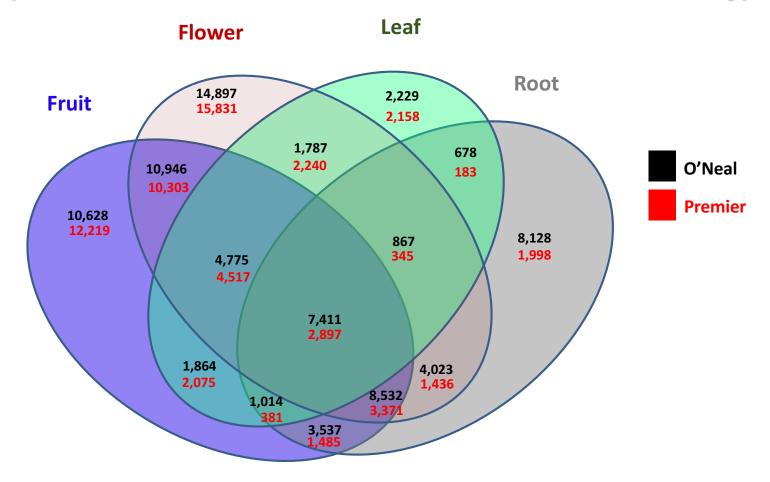
Data analysis pipeline (RSII Data)


All SMRT cells of each cultivar were used to output FLNC, LQ and HQ reads

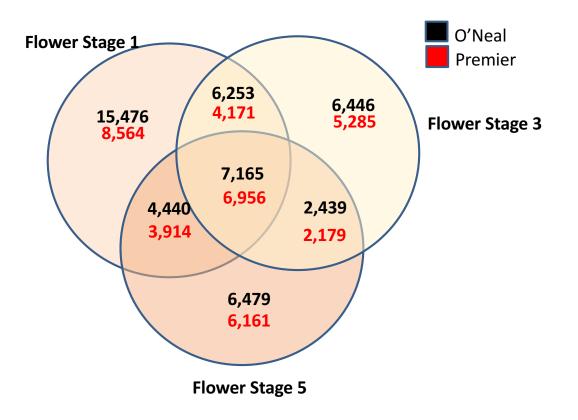
 $https://github.com/PacificBiosciences/cDNA_primer/wiki/RS_lsoSeq-\%28v2.3\%29-Tutorial-\%231.-Getting-full-length-reads$



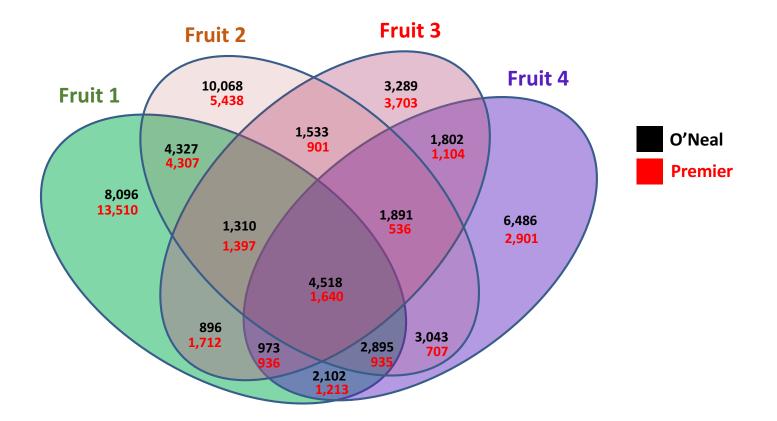
Proportion of LQ and HQ Reads in 4X and 6X Blueberry Genotypes Separated by Different Tissues



Demultiplexing Full Length Non-chimeric Reads (FLNC)



Overlap of all PacBio Isoforms in Four Tissues of 4X and 6X Genotypes



Overlap of all PacBio Isoforms in Three Flower Development Stages of 4X and 6X Genotypes

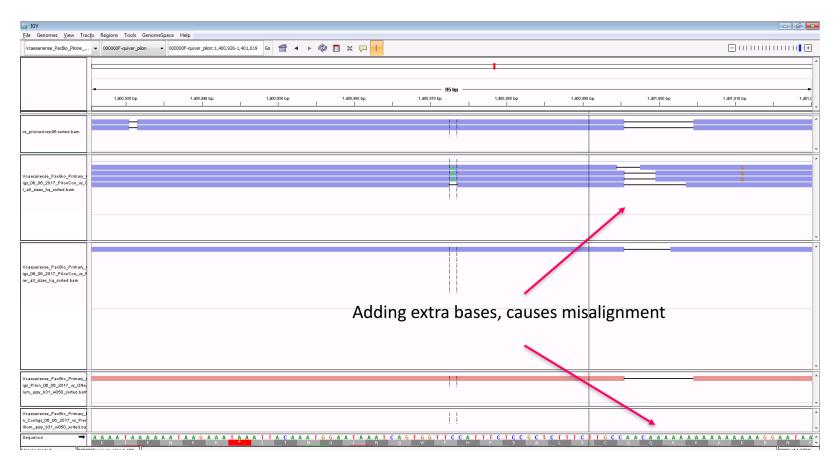
Number of Iso-Seq Sequences Separated by Tissue Type in 4X and 6X Genomes

GMAP Was Used to Map HQ Reads to the Reference Sequence

- Two versions of reference sequence was used
 - Quivered genome
 - Pilon corrected Quivered genome (<u>https://github.com/broadinstitute/pilon/wiki</u>)
- Mapping was done to primary contigs
- It ran once with default parameters only for 4X and 6X iso-seq data
- It ran for the second time with the following parameters for 2x, 4X and 6X
 - --min-trimmed-coverage = 0.95 & --min-identity=0.95

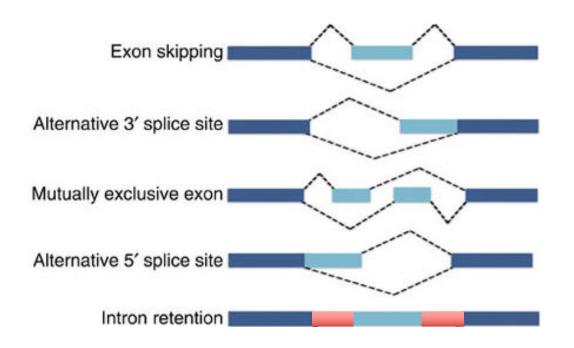
	GMAP Default Values								
No. of Iso-Se	eqs Mapped to Qu	ivered Genome	No. of Iso-Seqs Mapped to Quivered – Piloned Genom						
2X	4X	6X	2X	4X	6X				
-	140,664 (99.48%)	109,672 (99.63%)	-	140,096 568 (99.07%)	109,099 <mark>573</mark> (99.13%)				
No. of Iso-Seqs U	No. of Iso-Seqs Uniquely Mapped to Quivered Genome			Mapped to Quivere	ed – Piloned Genome				
-	100,441	71,146	-	103,106	77,613				
				2,60	65 6,467				

The increase in the number of uniquely mapped sequences to the <u>Pilon corrected genome</u>, may indicate that it is better to make this correction.



	GMAP Run With min cov 0.95 and min identity 0.95								
No. of Iso-Se	eqs Mapped to Qu	ivered Genome	No. of Iso-Seqs Mapped to Quivered – Piloned Genome						
2X	4X	6X	2X	4X	6X				
-	127,312 (90.00%)	96,681 (87.85%)	-	127,307 5 (90.00%)	96,709 (87.87%) ²⁸				
No. of Iso-Seqs Uniquely Mapped to Quivered Genome			No. of Iso-Seqs Mapped to Quivered – Piloned Genome						
29,512	100,428	74,097	29,509	100,329 99	74,074 🛂				

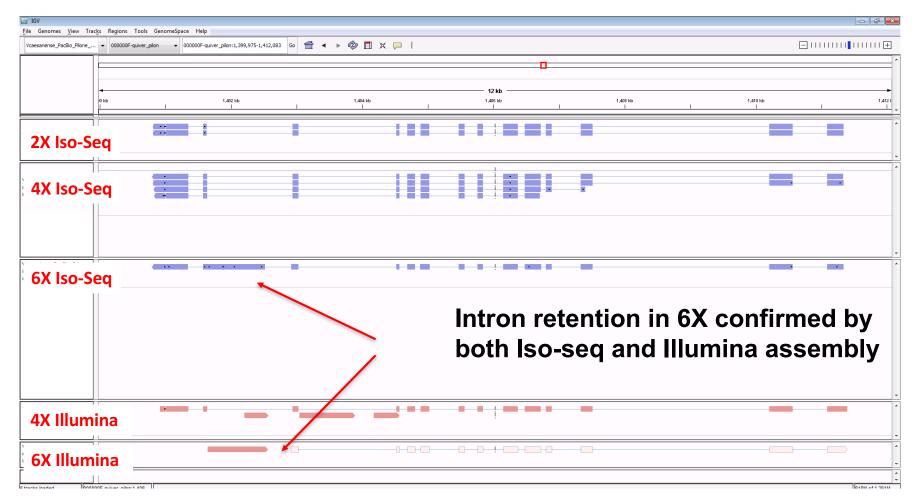
Should We Correct The Genome with Pilon?



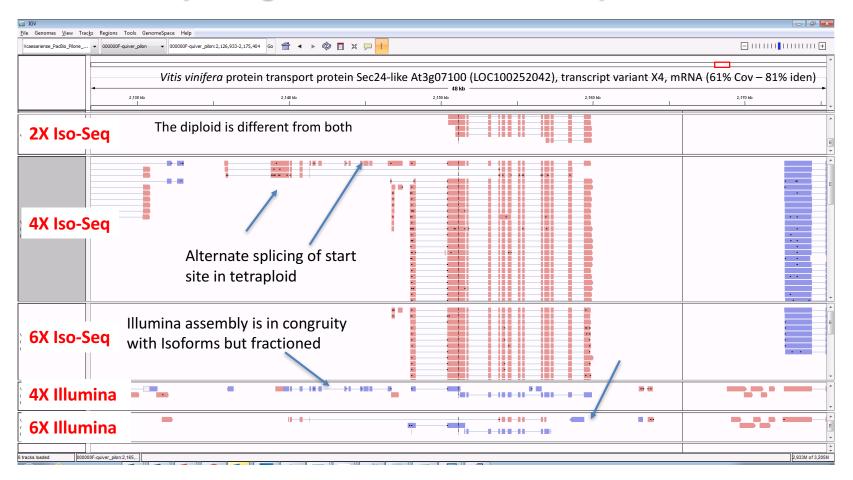
Aligning Iso-Seq to Only Quivered Genome

	iid AshrafhDocument/Bluebery/W-85-20_PacBio_Falcon_Unzip_Quivered_03312017/igv_session.xml g Regions Tools GenomeSpace Help	
Vcaesariense_PacBio_Primary	coccoorFigurer coccoorFigurer coccoorFigurer coccoorFigurer coccoorFigurer coc	
	4 95 bp	
	1,400,580 bp 1,400,510 bp 1,400,520 bp 1,400,530 bp 1,400,540 bp 1,400,550 bp 1,400,550 bp 1,400,570 bp 1,400	1,400,690 bp
_quiverred-res-95.sorted.bam		
acBio_assy_03312017_to_One		
seq_hq_sorted.bam		
aoBio_assy_03312017_to_Prer		
oseq_hq_sorted.bam		
oaesariense_PaoBio_Primary_I s_03_31_2017_vs_ONeal_IIIur		
_b31_w350_sorted.bam		
caesariense_PacBio_Primary_(is_03_31_2017_vs_Premier_III) ssy_b31_w350_sorted.bam		
	 a a a t a a a a a t a a g a a t <u>a a a t t a c a a t g g a t a a a t c a g t g g t t c a t t t c t c g c t c t t t c t t g c c la a a a a a a a g g a a t a a a g c a</u>	

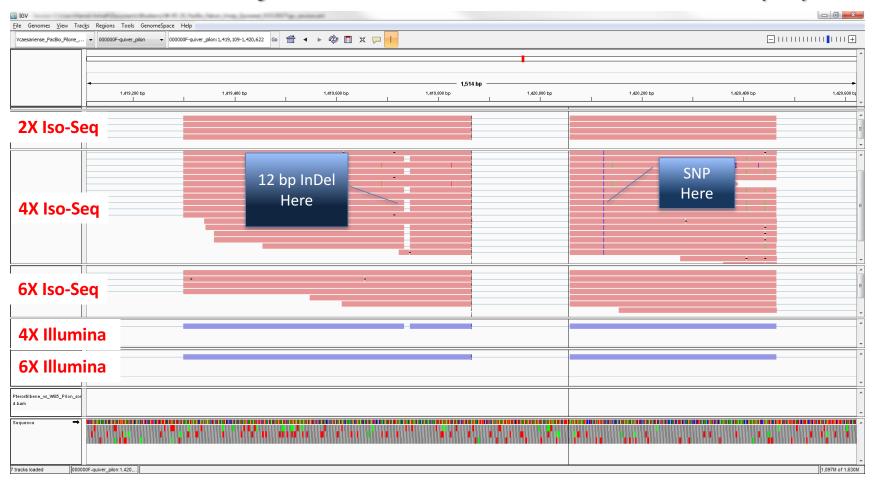
Five Alternative Splicing Modes


Wang et al. (2016) https://www.nature.com/articles/ncomms11708

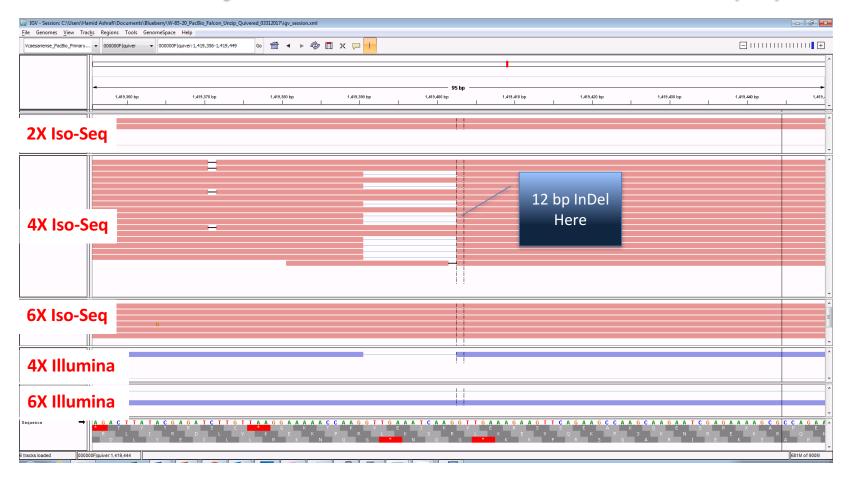
Polymorphisms in hexaploids not in 2X Introns in Illumina assembly



- 0 **X** IGV - Session: C:\Users\Hamid Ashrafi\Documents\Blueberry\W-85-20_PacBio_Falcon_Unzip_Quivered_03312017\igv_session.xml File Genomes View Tracks Regions Tools GenomeSpace Help Vcaesariense_PacBio_Primary... - 000000F|quiver - 000000F|quiver:266,878-291,094 💿 🕋 🔺 🕨 🛷 🖪 🗶 🖵 I 24 kh 268 kb 270 kb 272 kb 274 kb 276 kb 278 kb 280 kb 282 kb 284 kb 286 kb 288 kb 290 kb 2X Iso-Seq 4X Iso-Seq . -i in -----.... Vitis vinifera gamma-tubulin complex component 5 (LOC100247210), transcript variant X5 80% iden. l **6X Iso-Seq** • ÷ • Ipomoea nil gamma-tubulin complex component 5 (LOC109153295), t transcript variant X2 78% iden ÷÷. ------**4X Illumina** . . -**6X Illumina** 7 tracks loaded 000000Fjquiver:285,621 568M of 757M



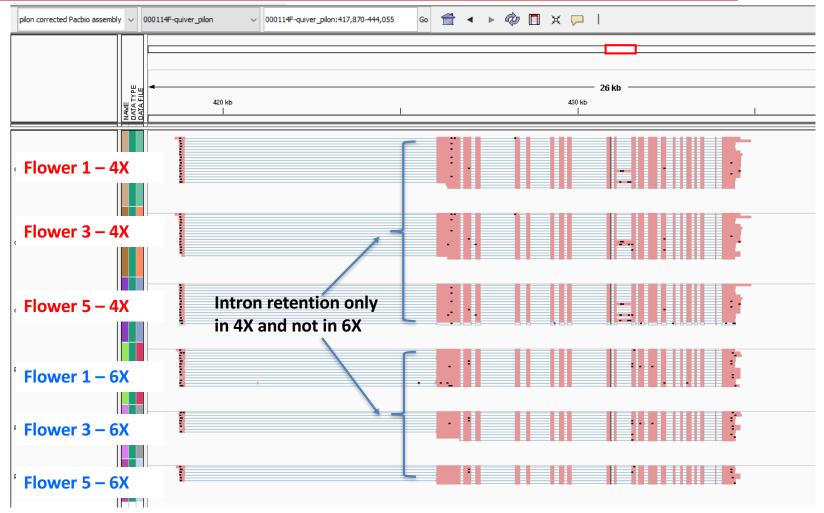
Alternate Splicing of Start Site of a Transport Protein in 4X



Isoform Analysis Unrevealed Other Forms of Variation (1/3)

Isoform Analysis Unrevealed Other Forms of Variation (2/3)

Isoform Analysis Unrevealed Other Forms of Variation (3/3)


Tissue Specific Iso-Forms

Tissue Specific Intron Retention

pilon corrected Pacbio assembl	ly ~	000003F-quiver_pilon ~ 000003F-quiver_pilon:424,153-437,690 Go 🕋 < 🕨 🖗 🖪 💥 🦵
	NAVE DATATYPE DATAFILE	
Flower 1		
Flower 2		
Flower 3		
Fruit 1		
Fruit 2		
Fruit 3		
Fruit 4		
Leaf		
Root		

Conclusions

- Using 54 SMRT RSII cells we were able to achieve a decent assembly of blueberry genome.
- Barcoding the RNA-Seq libraries helped us to save for the cost of the project.
- What makes different blueberries is more than simple SNP in the genes.
- We believe alternative splicing, Iso-forms and structural variants are responsible for a large proportion of variations and evolution of blueberry.
- We need to use the term "autoployploidy" with caution for blueberry and maybe other plants species.
- Although the chromosomes can pair during meiosis, this does not mean that sub-genomes are identical at the gene and iso-forms levels.
- Defining the iso-forms to have a biological meaning and connecting them to the actual function of the genes remains a challenging task.

Thank You Questions?